太原高端海选喝茶,苏州品茶工作室外卖,ypllt论坛官网入口,哈尔滨夜网桑拿论坛

当前位置: 首页 > 科研学术 > 学术预告 > 正文

【数论讨论班】Distinct distances on hyperbolic surfaces

【 发布日期:2020-11-30 】

题目:Distinct distances on hyperbolic surfaces

主讲人:孟宪昌(University of Göttingen)

摘要:Erdos in 1946 asked the question of finding the minimal number of distinct distances among any $N$ points in the plane. In our work, we give complete answer for this problem on all hyperbolic surfaces of finite volume. For any cofinite Fuchsian group $\Gamma\subset\mathrm{PSL}(2, \mathbb{R})$, we show that any set of $N$ points on the hyperbolic surface $\Gamma\backslash\mathbb{H}^2$ determines $\geq C_{\Gamma} \frac{N}{\log N}$ distinct distances for some constant $C_{\Gamma}>0$ depending only on $\Gamma$. In particular, for $\Gamma$ being any finite index subgroup of $\mathrm{PSL}(2, \mathbb{Z})$ with $\mu=[\mathrm{PSL}(2, \mathbb{Z}): \Gamma ]<\infty$, any set of $N$ points on $\Gamma\backslash\mathbb{H}^2$ determines $\geq C\frac{N}{\mu\log N}$ distinct distances for some absolute constant $C>0$.

时间:2020年12月01日,14:00-15:00

地点:腾讯会议,会议 ID:995 338 269

邀请人:黄炳荣

乐陵市9go191| 资溪县lv9910| 托克托县nnw114| 枣庄市0qt161| 阜新市ze086| 交城县zdz771| 会东县a8d618| 霍城县fmm548| 来宾市8fd475| 张家港市hi8737| 渝北区htt654| 托里县a9b249| 东山县zss511| 重庆市9xx747| 当雄县ij9773| 丰都县ts9822| 遂宁市bah46