太原高端海选喝茶,苏州品茶工作室外卖,ypllt论坛官网入口,哈尔滨夜网桑拿论坛

当前位置: 首页 > 科研学术 > 学术预告 > 正文

【数论讨论班】Erdos distinct distances problem in hyperbolic surfaces

【 发布日期:2020-11-23 】

题目:Erdos distinct distances problem in hyperbolic surfaces

主讲人:路志鹏(University of Göttingen)

摘要:Erdos distinct distances problem asks for the lower bound of number of distinct distances between pairs of points from any finite point sets of given size. The problem in the Euclidean plane was revolved by L. Guth and N. H. Katz in 2011. We study the problem in hyperbolic surfaces. The key in our work is to introduce an invariant (we call it "geodesic cover") for Fuchsian groups, which summons copies of fundamental polygons in the hyperbolic plane to cover pairs of representatives realizing distances in the corresponding hyperbolic surface. Then we use estimates of this invariant to study the distinct distances problem in hyperbolic surfaces. Especially, for S from a large class of hyperbolic surfaces, we establish the nearly optimal bound >=C_S N/\log N for distinct distances determined by any N points in S, where C_S>0 is some constant depending only on S. In particular, for S being modular surface or standard regular of genus >=2, we evaluate C_S explicitly.

时间:2020年11月24日,14:00-15:00

地点:腾讯会议,会议 ID:995 338 269

邀请人:黄炳荣

拜泉县ngn159| 南江县r7z266| 广水市zth614| 五莲县7jp674| 永仁县cb7892| 陆丰市bhi59| 闻喜县b5f163| 民丰县ppp944| 宝兴县r6f20| 额尔古纳市nrf282| 新蔡县6dd160| 万源市rx6209| 方正县tx6738| 昆明市uth751| 恩平市l6a133| 张家口市efd159| 九龙城区6zs631