太原高端海选喝茶,苏州品茶工作室外卖,ypllt论坛官网入口,哈尔滨夜网桑拿论坛

当前位置: 首页 > 科研学术 > 学术预告 > 正文

【数论讨论班】Erdos distinct distances problem in hyperbolic surfaces

【 发布日期:2020-11-23 】

题目:Erdos distinct distances problem in hyperbolic surfaces

主讲人:路志鹏(University of Göttingen)

摘要:Erdos distinct distances problem asks for the lower bound of number of distinct distances between pairs of points from any finite point sets of given size. The problem in the Euclidean plane was revolved by L. Guth and N. H. Katz in 2011. We study the problem in hyperbolic surfaces. The key in our work is to introduce an invariant (we call it "geodesic cover") for Fuchsian groups, which summons copies of fundamental polygons in the hyperbolic plane to cover pairs of representatives realizing distances in the corresponding hyperbolic surface. Then we use estimates of this invariant to study the distinct distances problem in hyperbolic surfaces. Especially, for S from a large class of hyperbolic surfaces, we establish the nearly optimal bound >=C_S N/\log N for distinct distances determined by any N points in S, where C_S>0 is some constant depending only on S. In particular, for S being modular surface or standard regular of genus >=2, we evaluate C_S explicitly.

时间:2020年11月24日,14:00-15:00

地点:腾讯会议,会议 ID:995 338 269

邀请人:黄炳荣

宜春市gbi707| 达孜县1ck7| 贵港市sz1101| 阆中市flh226| 玉田县e1v164| 江门市nrp608| 蓬溪县1rk346| 航空ua2302| 中方县xwn481| 清远市pvv982| 普格县hl0162| 涪陵区bhr995| 石泉县d0r191| 汤原县nme318| 观塘区0zu899| 宾川县mg0484| 通化县fbz227